Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

Jawaharlal Nehru
“Step Out From the Old to the New”

Indian Standard

METHODS OF TEST FOR
STABILIZED SOILS

PART I METHOD OF SAMPLING AND PREPARATION
OF STABILIZED SOILS FOR TESTING

(Incorporating Amendment No 1)

UDC 624 131 3

© BIS 2004

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

Price Group 2
Indian Standard

METHODS OF TEST FOR STABILIZED SOILS

PART I METHOD OF SAMPLING AND PREPARATION OF STABILIZED SOILS FOR TESTING

Soil Engineering Sectional Committee, BDC 23

Chairman

PROF S R MEHRA

Representing

Central Road Research Institute (CSIR) New Delhi

Members

SHRI B B L BHATNAGAR
SHRI K C CHANDIOK
SHRI VED PRAKASH (Alternate)
SHRI K N DADINA
SHRI A G DASTIDAR
SHRI R L DEWAN
PROF DINESH MOHAN
SHRI D R NARAHARI (Alternate)

Director (Central Soil Mechanics Research Station)

Director (DAMS II) (Alternate)

SHRI R N DOGRA
EXECUTIVE ENGINEER (SOIL MECHANICS AND RESEARCH DIVISION)

SHRI B N GUPTA
SHRI S N GUPTA
DR JAGDISH NARAIN

JOINT DIRECTOR RESEARCH (Civil) RDSO

DEPUTY DIRECTOR RESEARCH (SOIL MECHANICS) RDSO (Alternate)

SHRI S S JOSHI
SHRI S VARADARAJA (Alternate)
SHRI O P MALHOTRA

In personal capacity (P 820 New Alipore Calcutta 53)

Cementation Co Ltd Bombay

Bihar Institute of Hydraulic and Allied Research Khagaul Patna

Central Building Research Institute (CSIR) Roorkee

Central Water & Power Commission New Delhi

Indian Institute of Technology New Delhi

Public Works Department Madelhi

Irrigation Research Institute Roorkee

Central Board of Irrigation & Power New Delhi

University of Roorkee Roorkee

Railway Board (Ministry of Railways)

Engineer in Chief's Branch Army Headquarters

Government of Punjab

(Continued on page 2)
IS 4332 (Part I) 1967

(Continued from page 1)

Members
SHRI K K NAMBIAR
SHRI T M MENON (Alternate)
SHRI C B PATEL
SHRI PRITAM SINGH

Representative

Representative
Research Officer
SHRI C G SWAMINATHAN
SHRI D N TEJKHANDANI
SHRI B S BHATTI (Alternate)
SHRI J M TREHAN
SHRI T N BHARGAVA (Alternate)
DR H L UPPIAI

SHRI H C VERMA
SHRI D C CHATURVEDI (Alternate)
SHRI R NAGARAJAN
Director (Civ Engg)

Secretary
SHRI G RAMAN
Deputy Director (Civ Engg) ISI

Soil Testing Procedures and Equipment Subcommittee BDC 23 3

Convener
DR H L UPPIAI

Members
PROF A L AM SINGH
SHRI R L DFwan
DIRECTOR (CENTRAL SOIL MECHANICS RESEARCH STATION)
DIRECTOR (DAMS II) (Alternate)
SHRI H K GUHA
SHRI N N BHATTACHARYYA (Alternate)
SHRI O P MAI HOTA
DR I S UPPIAI (Alternate)
SHRI D R NARAHARI
SHRI G S JAIN (Alternate)
SHRI MAHABIR PRASAD
SHRI H C VERMA

Representing
Concrete Association of India Bombay
M N Dastur & Co (Private) Ltd Calcutta
Indian National Society of Soil Mechanics &
Foundation Engineering New Delhi
Public Works Department Government of
West Bengal
Engineering Research Department Hyderabad
B & R Research Laboratory Chandigarh
Institution of Engineers (India) Calcutta
National Buildings Organization New Delhi
Roads Wing (Ministry of Transport & Shipping)
Central Road Research Institute (CSIR)
New Delhi
Public Works Department Government of
Uttar Pradesh
Director General ISI (Ex officio Member)

Central Road Research Institute (CSIR)
New Delhi
University of Jodhpur
Bihar Institute of Hydraulic and Allied Research
Khagaul Patna
Central Water & Power Commission New Delhi
Geologists Syndicate Private Limited Calcutta
B & R Research Laboratory Public Works
Department Government of Punjab
Central Building Research Institute (CSIR)
Roorkee
Public Works Department Government of
Uttar Pradesh
Associated Instrument Manufacturers (India)
Private Limited New Delhi

2
Indian Standard

METHODS OF TEST FOR STABILIZED SOILS

PART I METHOD OF SAMPLING AND PREPARATION OF STABILIZED SOILS FOR TESTING

0 FOREWORD

0 1 This Indian Standard was adopted by the Indian Standards Institution on 20 October 1967 after the draft finalized by the Soil Engineering Sectional Committee had been approved by the Civil Engineering Division Council.

0 2 Soil stabilization in the broadest sense is the alteration of any inherent property of a soil to improve its engineering performance. The classification of the methods of stabilization is based on the treatment given to the soil (for example dewatering, compaction etc.) process involved (for example thermal, electrical etc.) and on additives employed (for example asphalt, cement etc.). The choice of a particular method depends on the characteristics of the problem on hand. For studying the effectiveness of a stabilization technique under investigation, certain standard methods of test are required and these are being published in parts. This part [IS 4332 (Part I) 1967] lays down the method of sampling and preparation of stabilized soils for testing.

0 3 In the formulation of this standard, due weightage has been given to international coordination among the standards and practices prevailing in different countries in addition to relating it to the practices in this field in this country. This has been met by basing the standard on BS 1924 1957 Methods of test for stabilized soils published by the British Standards Institution.

0 4 This edition 1 1 incorporates Amendment No 1 (August 1983). Side bar indicates modification of the text as the result of incorporation of the amendment.

0 5 In reporting the results of a test or analysis made in accordance with this standard, if the final value observed or calculated is to be rounded off, it shall be done in accordance with IS 2 1960*

1 SCOPE

1 1 This standard (Part I) lays down the general principles of sampling for obtaining disturbed samples and the method for preparation of stabilized soils for testing.

*Rules for rounding off numerical values (revised)
2 SAMPLING

2.1 The purpose for which a sample is required may be considered either as being to represent as large a body of material as possible in order to study its average properties or as being one of a series representing a relatively small body of material in order to study the variability of its properties. The former samples will be referred to as representative and typical of these are those samples taken in advance of construction to assess the suitability of a given source of soil. The latter samples will be referred to as selected and typical are those samples taken for control tests carried out during construction where the samples represent only a small proportion of the whole work.

2.2 Representative samples should be obtained by taking a number of sub samples from delimited areas from which material is being sampled and these sub samples should be thoroughly mixed. The number of sub samples should be a minimum of five or more depending on the area. The quantity of the resulting sample shall be reduced to that required for tests. If the quantity of the test sample is one eighth or more of the total sample it shall be obtained by riffling or quartering. If the quantity of the test sample is less than one eighth of the total sample it shall be obtained by mixing six small samples of appropriate quantity taken from the total sample.

2.3 Where several sub samples are taken they should normally each be taken so as to eliminate as far as possible any segregation that occurred in the placing of the material being sampled. For example, the coarse material of a stock pile or lorry load will normally be concentrated at the base and edges and apex will be deficient. Care should also be taken that the size of the sampling tool is not so small that the coarser material rolls off.

2.4 In some instances the whole of a selected sample may be taken from one place without sub sampling. For sampling a representative sample from a quantity of material of about 4 m³ in size about 10 sub samples may be required. It is convenient of the size if the sub sample can be chosen such that no reduction in the size of this mixed sample is required. Selected samples will often be taken from soil mixed with a stabilizer and in many such instances speed of treatment will be of greater importance than thoroughness of mixing of the sub samples. The changes in uniformity brought about by mixing may be undesirable because the selected sample may become better mixed than the material from which it was taken.

2.5 The size of sample required will depend on the particle size distribution and the purpose to which it is to be put.

NOTE — The sample taken should be sufficient to provide the weights of prepared soil specified for each test in the respective standards.
2 6 Where samples are being taken for the determination of moisture content or for testing without change of moisture content the use of shallow trays for storing or carrying should be avoided as these expose the sample unnecessarily to evaporation or rainfall. The sample should be taken in air tight containers. Likewise particularly at a site laboratory where much of the work may be carried out in the open such samples should be kept covered over if not sealed up except when material is actually being abstracted.

3 PREPARATION OF SAMPLES FOR TESTING

3 1 Apparatus

3 1 1 Containers or Bags — Containers with air tight lids or bags capable of being sealed suitable for samples of various sizes up to 50 kg in weight

3 1 2 Non corrodible Metal Trays — Trays of sizes ranging from 450 cm2 to 8 400 cm2

3 1 3 Pulverizing Apparatus — Either mortar and rubber covered pestle or a mechanical device consisting of a mortar and a power driven rubber covered pestle suitable for breaking up the aggregation of soil particles without reducing the size of individual grains

3 1 4 Balances — capable of weighing up to 10 kg and 25 kg readable and accurate to 1 g and 5 g respectively

3 1 5 Oven — thermostatically controlled capable of maintaining a temperature of 25° to 50°C and 105° to 110°C

3 1 6 Mechanical Mixers — Mixers (preferably electrically operated) of suitable capacities or suitable tools for hand mixing for example a spatula a trowel and a shovel

3 1 7 Graduated Glass or Polythene Cylinders — of 100 ml and 1 000 ml capacity

3 1 8 Sieves — of sizes 40 mm 20 mm 10 mm 4 75 mm and 2 mm IS Sieves

3 1 9 Sampler — a suitable riffle sampler or sample splitter for quartering the samples (see IS 1607 1960*)

3 2 Quantity of sample for determination of moisture content

3 2 1 If the moisture content of the natural soil is required the soil sample shall be obtained and tested in accordance with IS 2720 (Part 2) 1973†

*Methods for dry sieving
†Methods of test for soils Part 2 Determination of water content (second revision)
3.2.2 If the moisture content of stabilized soil mixtures as received is required a representative or selected portion of the material of the following minimum weights shall be obtained [see also IS 4332 (Part II) 1967*]

<table>
<thead>
<tr>
<th>Grading of Soils</th>
<th>Minimum Quantity of Sample of Stabilized Soil Mixtures Weight in g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soil with non volatile stabilizer</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>For stabilized soil mixture 90 percent of which passes a 2 mm IS Sieve</td>
<td>30</td>
</tr>
<tr>
<td>For stabilized soil mixture 90 percent of which passes a 20 mm IS Sieve</td>
<td>300</td>
</tr>
<tr>
<td>For stabilized soil mixture 90 percent of which passes a 40 mm IS Sieve</td>
<td>3000</td>
</tr>
</tbody>
</table>

3.2.2.1 Where one eighth or more of the total sample is being used for the moisture content determination the sample shall be obtained if practicable by riffling or quartering but otherwise by combining not less than four sub samples taken from the main sample. Where a greater reduction in size is required it shall be obtained by combining ten sub samples taken from the main sample as repeated riffling or quartering would in many cases reduce the moisture content of the sample. The main sample shall be mixed before such sub samples are taken care being taken that the moisture content is not appreciably reduced during this process.

3.3 Samples of Natural Soil for Other Tests — If tests are to be conducted on natural soil for purposes of comparison the sample shall be prepared as specified in IS 2720 (Part I) 1983†.

3.4 Mixing of Natural Soils with Water and Stabilizing Agents

3.4.1 Blending Different Soils — If it is desired to blend two or more soils appropriate weights of the different soils to be blended with due allowance for moisture content shall be thoroughly mixed to a uniform condition in the mechanical mixer or by hand using a spatula or trowel. An appropriate quantity of the dried material shall be mixed with water and stabilizer in the manner indicated in 3.4.2 to 3.4.5.

*Methods of test for stabilized soils Part II Determination of moisture content of stabilized soil mixtures (Since revised)
†Methods of test for soils Part I Preparation of dry soil samples for various tests (second revision)
3 4 2 **Mechanical Stabilization** — The required amount of water shall be incorporated with the soil by mixing thoroughly to a uniform condition in a mechanical mixer or by hand taking care to minimize loss of moisture. The moist soil shall then be allowed to stand for 24 hours in an air tight container. This procedure applies either to soil which is inherently mechanically stable or to soils which are blended to achieve this result.

3 4 3 **Stabilization with Powders**

3 4 3 1 An amount of water as much close to the required moisture content as possible shall be incorporated with the soil by mixing thoroughly to a uniform condition in a mechanical mixer or by hand taking care to minimize loss of moisture. In the case of heavy clays the moist soil shall be allowed to stand overnight in an air tight container.

3 4 3 2 The required quantity of stabilizer shall then be added to the soil and mixed to a uniform condition either by mixing in a mechanical mixer for about one to two minutes or by hand using a spatula trowel or other suitable tool. The remainder of the water shall then be added and mixing continued for a further period of about eight minutes.

3 4 3 3 When cement stabilized soil is being mixed for compaction tests or for the making of cylinder or cube specimens no more soil than can be used within 30 minutes of adding the cement to the soil shall be mixed. If any stabilized soil remains at the end of this period it shall be discarded.

3 4 4 **Emulsified Oil or Emulsified Asphaltic Bitumen Stabilization**

3 4 4 1 Sufficient water shall be incorporated with the soil to bring the soil mortar approximately to the plastic limit. The material shall be mixed either in a mechanical mixer or by hand using a spatula or other suitable tool for 10 minutes or until it is judged by visual inspection that adequate dispersion of the water has been obtained taking care to minimize loss of moisture in mixing. The moist soil shall be allowed to stand for 24 hours in an air tight container.

3 4 4 2 The required quantity of emulsion diluted if considered necessary with distilled water shall then be added to the soil and mixing started. Additional water shall be added if necessary during the mixing to ensure a uniform distribution of the emulsified stabilizer. Any other additive shall be incorporated in a manner appropriate to the process of stabilization under consideration (see Note).

NOTE — The time of mixing cannot be specified in advance. Guidance may be obtained from the suppliers of the stabilizer or by means of preliminary trials. It should be noted that excessive mixing may be deleterious in certain cases.

3 4 4 3 The mixer shall then be allowed to dry uniformly in air until it has the moisture content required for the subsequent test.
3.4.5 Oil Asphaltic Bitumen and Other Stabilizers — The required amount of water shall be incorporated with the soil by mixing thoroughly to a uniform condition in a mechanical mixer or by hand using a spatula or other suitable tool taking care to minimize loss of moisture. The moist soil shall be allowed to stand for 24 hours in an air tight container. The required quantity of stabilizer and any other additive shall be incorporated in the soil in a manner appropriate to the process under consideration (see Note under 3.4.4.2).

3.5 Initial Preparation of Previously Mixed Stabilized Soil Mixture for Strength Tests

3.5.1 For fine grained cohesive soils the sample as received may have compacted aggregations that have been produced as a result of mixing. For mixes prepared in a laboratory mixer it is recommended that all the material shall be passed through a 20 mm IS Sieve by working material greater than 10 mm through the mesh. The material shall then be thoroughly remixed by hand before preparing the test specimens. This procedure will result in a more uniformly compacted specimen. For mixes taken from construction site work the specimens shall be made from all the mixed material and the size of the specimen used shall be determined by the size of the aggregations of stabilized soil produced by the mixing plant.

3.5.2 For materials that are stabilized with cement it is essential that all operations including compaction are completed within about 30 minutes after the mixing is completed to avoid considerable loss in strength which may occur as a result of the hydration of the cement.
Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act* 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use in the course of implementing the standard of necessary details such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications) BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed. If the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of BIS Catalogue and Standards Monthly Additions.

This Indian Standard has been developed by Technical Committee BDC 23

<table>
<thead>
<tr>
<th>Amend No</th>
<th>Date of Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amd No 1</td>
<td>August 1983</td>
</tr>
</tbody>
</table>

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No</th>
<th>Date of Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amd No 1</td>
<td>August 1983</td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters
Manak Bhavan 9 Bahadur Shah Zafar Marg New Delhi 110002
Telephones 323 01 31 323 33 75 323 94 02
Telegram Manaksanstha (Common to all offices)

Regional Offices

Central
Manak Bhavan 9 Bahadur Shah Zafar Marg
NEW DELHI 110002
Telephones 323 76 17 323 38 41

Eastern
1/14 C I T Scheme VII M V I P Road Kankurgachi
KOLKATA 700054
Telephones 337 84 99 337 85 61 337 86 26 337 91 20

Northern
SCO 335 336 Sector 34 A CHANDIGARH 160022
Telephones 60 38 43 60 20 25

Southern
C I T Campus IV Cross Road CHENNAI 600113
Telephones 235 02 16 235 04 42 235 15 19 235 23 15

Western
Manakalaya E9 MIDC Marol Andheri (East)
Mumbai 400093
Telephones 832 78 92 832 78 58 832 78 91 832 78 92

Branches
AHMEDABAD BANGALORE BHOPAL BHUBANESHWAR COIMBATORE FARIDABAD GHAZIABAD GUWAHATI HYDERABAD JAIPUR KANPUR LUCKNOW NAGPUR NALAGARH PATNA PUNE RAJKOT THIRUVANANTHAPURAM VISHAKHAPATNAM